Abstract

Background: Genome-wide association studies (GWAS) have opened the door to unprecedented large-scale identification of susceptibility loci for human diseases and traits. However, it is still a great challenge to validate these loci and elucidate how these sequence variants give rise to the genetic and phenotypic changes. Because many drug targets are genetic disease genes and the general drug mode of action (MoA, agonist or antagonist) is in line with the consequence of target gene mutations (loss-of-function (LOF) or gain-of-function (GOF)), here we propose a chemical genetic method to address the above issues of GWAS. Objective: This study intends to use chemical genetics information to validate GWAS-derived disease loci and interpret their underlying pathogenesis. Method: We conducted a comprehensive comparative analysis on GWAS data and drug/target information (chemical genetics information). Results: We have identified hundreds of GWAS-derived disease loci which are linked to drug target genes and have matched disease traits and drug indications. It is interesting to note that more than 40% genes have been recognized as disorder factors, indicating the potential power of chemical genetic validation. The pathogenesis of these loci was inferred by the corresponding drug MoA. Some inferences were supported by prior experimental observations; some were interpreted in terms of microRNA regulation, codon usage bias, and transcriptional regulation, in particular the transcription factor-binding affinity variation induced by disease-causing mutations. Conclusion: In summary, chemical genetics information is useful to validate GWAS-derived disease loci and to interpret their underlying pathogenesis as well, which has important implications not only in medical genetics but also in methodology evaluation of GWAS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.