Abstract
The protein kinase Cdc2p is the master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. It is required both for entry into mitosis and for onset of DNA replication. Cdc2p must be inactivated to permit exit from mitosis, licensing of replication origins and cytokinesis. To study the role of Cdc2p in greater detail, we generated a cdc2 allele that is sensitive to an inhibitory ATP analogue. We show that the inhibitor-induced cell cycle arrest is reversible and examine the effect of inhibiting Cdc2p on the regulation of the septation initiation network (SIN), which controls the initiation of cytokinesis in S. pombe. We found that specific inactivation of Cdc2p in a mitotically arrested cell promotes the asymmetrical recruitment of SIN proteins to the spindle poles and the recruitment of the most downstream SIN components and beta-(1,3) glucan synthase to the contractile ring. Thus, we conclude that inactivation of Cdc2p is sufficient to activate the SIN and promote cytokinesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.