Abstract

The mathematical modelling of reaction systems for chemical generation of atomic iodine is presented. This process is aimed to be applied in the chemical oxygen–iodine laser (COIL), where it can save a substantial part of energy of singlet oxygen and so increase the laser output power. In the suggested method, gaseous reactants for I atoms generation are admixed into the COIL primary gas flow containing singlet oxygen. Two reaction systems were proposed, based on the reaction of hydrogen iodide with chemically generated atomic fluorine or chlorine. It was found that the reaction path via Cl atoms better matches the experimental conditions of COIL with a yield of atomic iodine of up to 67%. As a result of modelling, a suitable reaction system and design of experimental arrangement for the effective production of atomic iodine in laser conditions were found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.