Abstract

Abstract In this work, we have systematically studied the structural, energetic and electronic properties of graphene functionalized with carbene groups by using density functional theory. Introducing a low concentration of CCl 2 group in graphene was studied in detail by DFT, and closed cyclopropane-like three-membered ring structure was formed, meanwhile, the potential candidate carbene groups CR 2 (R = H, F, CH 3 , CN, NO 2 , OCH 3 , CCH, C 6 H 5 ) were added to graphene sheet, and CR 2 (R = H, NO 2 , CH 3 ) groups were expected to be good reactive species to covalently modify graphene. The graphene functionalization with carbene groups above can open graphene's band gap. More CCl 2 molecules were added to graphene, and different concentrations of CCl 2 group can tune graphene's band gap. In addition, the addition of CCl 2 group to graphene edges was investigated, and the stronger binding energy was found. Multiple CCl 2 molecules preferred to be bound with the same edge of graphene nanoribbon. This work provides an insight into the detailed molecular mechanism of graphene functionalization with carbene groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.