Abstract

Unravelling how the complexity of living systems can (have) emerge(d) from simple chemical reactions is one of the grand challenges in contemporary science. Evolving systems of self‐replicating molecules may hold the key to this question. Here we show that, when a system of replicators is subjected to a regime where replication competes with replicator destruction, simple and fast replicators can give way to more complex and slower ones. The structurally more complex replicator was found to be functionally more proficient in the catalysis of a model reaction. These results show that chemical fueling can maintain systems of replicators out of equilibrium, populating more complex replicators that are otherwise not readily accessible. Such complexification represents an important requirement for achieving open‐ended evolution as it should allow improved and ultimately also new functions to emerge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.