Abstract

The physical and chemical meaning of real space molecular fragments resulting from arbitrary partitions of the density is reviewed under a common unifying formalism. Both fuzzy (interpenetrating) and non-fuzzy (exhaustive) decompositions are treated on an equal basis. Density decompositions are consistently generalized to compatible density matrix partitions by using Li and Parr's ideas (Li and Parr J Chem Phys 1986, 84, 1704), and these are carried onto an energy partition. It is argued that the merits of a given decomposition should be judged against both the charge and the energetic image it provides. Atomic partitions are used to show how the interacting quantum atoms approach (IQA) allows us to cope with the most important energy cancellations of quantum chemistry. Binding results from a trade-off between atomic (or fragment) energy deformations with respect to a reference and interatomic (interfragment) interactions. Deformation energies are divided into charge transfer and redistribution terms and their relative roles are analyzed. A number of systems are compared against the fuzziness of different density decompositions. The results consistently show that fuzzy partitions tend to give low atomic net charges and enhanced covalency, while exhaustive partitions generate larger net charges and smaller covalencies, across a wide range of bonding regimes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call