Abstract

The region along the Taihang Mountains in the North China Plain (NCP) is characterized by serious fine particle pollution. To clarify the formation mechanism and controlling factors, an observational study was conducted to investigate the physical and chemical properties of the fine particulate matter in Jiaozuo city, China. Mass concentrations of the water-soluble ions (WSIs) in PM2.5 and gaseous pollutant precursors were measured on an hourly basis from December 1, 2017, to February 27, 2018. The positive matrix factorization (PMF) method and the FLEXible PARTicle (FLEXPART) model were employed to identify the sources of PM2.5. The results showed that the average mass concentration of PM2.5 was 111 μg/m3 during the observation period. Among the major WSIs, sulfate, nitrate, and ammonium (SNA) constituted 62% of the total PM2.5 mass, and NO3− ranked the highest with an average contribution of 24.6%. NH4+ was abundant in most cases in Jiaozuo. According to chemical balance analysis, SO42−, NO3−, and Cl− might be present in the form of (NH4)2SO4, NH4NO3, NH4Cl, and KCl. The liquid-phase oxidation of SO2 and NO2 was severe during the haze period. The relative humidity and pH were the key factors influencing SO42- formation. We found that NO3− mainly stemmed from homogeneous gas-phase reactions in the daytime and originated from the hydrolysis of N2O5 in the nighttime, which was inconsistent with previous studies. The PMF model identified five sources of PM2.5: secondary origin (37.8%), vehicular emissions (34.7%), biomass burning (11.5%), coal combustion (9.4%), and crustal dust (6.6%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.