Abstract

Abstract The goal of this work is to evaluate the applicability of a novel set of surfactants to enhance recovery from a viscous oil, high temperature, high permeability, clastic reservoir. A large number of novel short-hydrophobe based surfactants/cosolvents were designed and synthesized. As these surfactants do not require expensive aliphatic alcohols for their synthesis, they are likely to be less costly than conventional anionic surfactants. Here only phenol hydrophobe based non-ionic surfactants with varying number of propylene oxide (PO) and ethylene oxide (EO) groups are discussed. These surfactant molecules were investigated for their aqueous stability limits, interfacial tensions (IFT) with a viscous crude oil and oil recovery from sandpack or sandstone cores. Surfactant phase behavior experiments with viscous crude oil showed low IFT (not ultralow) for single surfactant systems. Only one surfactant (Phenol-7PO-15EO) formulation was chosen for coreflood in sandpack and sandstone cores. Water flood recovered about 50% original oil in place (OOIP) and reduced the oil saturation to about 48% in the high permeability sandpacks. The tertiary surfactant polymer flood with Phenol-7PO-15EO increased the cumulative recovery to 99% for sandpacks. The oil recovery was insensitive to injection brine salinity in the range studied. As the permeability decreased, the tertiary oil recovery decreased if the permeability is lower than 7 Darcy. Surfactant-polymer (SP) formulations with this surfactant can be recommended for high permeability sandstone reservoirs with viscous oils, but not for sub-Darcy sandstones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call