Abstract

Cyclic volatile methylsiloxanes (cVMS) such as octamethycyclotetrasiloxane (D4), decamethycyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) are widely used as intermediates in the synthesis of high-molecular weight silicone polymers or as ingredients in the formulation of personal care products. The global environmental fate, latitudinal distribution, and long range transport of those cVMS were analyzed by two multimedia chemical fate models using the best available physicochemical properties as inputs and known persistent organic pollutants (POPs) and highly persistent volatile organic chemicals (“fliers”) as reference. The global transport and accumulation characteristics of cVMS differ from those of typical POPs in three significant ways. First, a large fraction of the released cVMS tends to become airborne and is removed from the global environment by degradation in air, whereas known POPs have a tendency to be distributed and persistent in all media. Secondly, although cVMS can travel a substantial distance in the atmosphere, they have little potential for deposition to surface media in remote regions. This contrasts with a deposition potential of known POPs that exceeds that of cVMS by 4–5 orders of magnitude. Thirdly, cVMS have short global residence times with the majority of the global mass removed within 3months of the end of release. Global residence times of POPs on the other hand are in years. The persistent fliers resemble the cVMS with respect to the first two attributes, but their global residence times are more like those of the POPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.