Abstract
Large Eddy Simulations (LES) of Moderate and Intense Low oxygen Dilution (MILD) combustion of a Jet-in-Hot-Coflow (JHC) burner were performed using detailed chemistry. On the contrary to traditional flames, where heat release is occurring in very thin fronts, MILD combustion occurs in the distributed reaction regime where the reaction zone is broad, thus, this paper applies a direct Arrhenius closure with detailed chemistry to resolve important details of the fuel oxidation reactions. Comparisons of LES results are in good agreement with experiments, demonstrating that the simulations capture the intermediate species and finite reaction rate effects. A Chemical Explosive Mode Analysis (CEMA) was used to determine the flame structure and to detect the pre- and post-ignition regions, including the contributions to the CEMs analyzing the Explosion Index (EI) and Participation Index (PI). To the best of our knowledge, a detailed study of CEMA on MILD or flameless regime has never been reported. The flame structure was clearly visualized with CEMA, as well as the lean and the rich flame fronts. Different flame zones close to the anchoring points of these turbulent lifted flames were selected and the analysis demonstrates the contributions of dominant chemical species, such as HO2 and O. The reactions related to the dominant local CEM were obtained to highlight the nature of the stabilization in these highly diluted operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.