Abstract

Glycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) is an important molecular MRI methodology developed to assess changes in cartilage GAG concentrations. The correction for B0 field inhomogeneity is technically crucial in gagCEST imaging. This study evaluates the accuracy of the B0 estimation determined by the dual gradient echo method and the effect on gagCEST measurements. The results were compared with those from the commonly used z-spectrum method. Eleven knee patients and three healthy volunteers were scanned. Dual gradient echo B0 maps with different ∆TE values (1, 2, 4, 8, and 10ms) were acquired. The asymmetry of the magnetization transfer ratio at 1ppm offset referred to the bulk water frequency, MTRasym(1ppm), was used to quantify cartilage GAG levels. The B0 shifts for all knee patients using the z-spectrum and dual gradient echo methods are strongly correlated for all ∆TE values used (r=0.997 to 0.786, corresponding to ∆TE=10 to 1ms). The corrected MTRasym(1ppm) values using the z-spectrum method (1.34%±0.74%) highly agree only with those using the dual gradient echo methods with ∆TE=10ms (1.72%±0.80%; r=0.924) and 8ms (1.50%±0.82%; r=0.712). The dual gradient echo method with longer ∆TE values (more than 8ms) has an excellent correlation with the z-spectrum method for gagCEST imaging at 3T.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.