Abstract
A detailed study of the chemical composition of the groundwater surrounding the Mt. Hekla volcano in south Iceland was performed to assess fluid evolution and toxic metal mobility during CO 2 -rich fluid basalt interaction. These fluids provide a natural analogue for evaluating the consequences of CO 2 sequestration in basalt. The concentration of dissolved inorganic C in these groundwaters decreases from 3.88 to 0.746 mmol/kg with increasing basalt dissolution while the pH increases from 6.9 to 9.2. This observation provides direct evidence of the potential for basalt dissolution to sequester CO 2 . Reaction path calculations suggest that dolomite and calcite precipitation is largely responsible for this drop in groundwater dissolved C concentration. The concentrations of toxic metal(loid)s in the waters are low, for example the maximum measured concentrations of Cd, As and Pb were 0.09, 22.8 and 0.06 nmol/kg, respectively. Reaction path modelling indicates that although many toxic metals may be initially liberated by the dissolution of basalt by acidic CO 2 -rich solutions, these metals are reincorporated into solid phases as the groundwaters are neutralized by continued basalt dissolution. The identity of the secondary toxic metal bearing phases depends on the metal. For example, calculations suggest that Sr and Ba are incorporated into carbonates, while Pb, Zn and Cd are incorporated into Fe (oxy)hydroxide phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.