Abstract

AbstractWe computed the chemical evolution of Seyfert galaxies, residing in spiral bulges, based on an updated model for the Milky Way bulge with updated calculations of the Galactic potential and of the feedback from the central supermassive black hole (BH) in a spherical approximation. We followed the evolution of bulges of masses 2 × 109 − 1011M⊙ by scaling the star-formation efficiency and the bulge scalelenght as in the inverse-wind scenario for ellipticals. We successfully reproduced the observed relation between the BH mass and that of the host bulge, and the observed peak nuclear bolometric luminosity. The observed metal overabundances are easily achieved, as well as the constancy of chemical abundances with the redshift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.