Abstract
The generation of bioactive molecules from inactive precursors is a crucial step in the chemical evolution of life, however, mechanistic insights into this aspect of abiogenesis are scarce. Here, we investigate the protein‐catalyzed formation of antivirals by the 3C‐protease of enterovirus D68. The enzyme induces aldol condensations yielding inhibitors with antiviral activity in cells. Kinetic and thermodynamic analyses reveal that the bioactivity emerges from a dynamic reaction system including inhibitor formation, alkylation of the protein target by the inhibitors, and competitive addition of non‐protein nucleophiles to the inhibitors. The most active antivirals are slowly reversible inhibitors with elongated target residence times. The study reveals first examples for the chemical evolution of bio‐actives through protein‐catalyzed, non‐enzymatic C−C couplings. The discovered mechanism works under physiological conditions and might constitute a native process of drug development.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.