Abstract

AbstractThrough periodic introspection and assessment, the chemical engineering field has developed a mature undergraduate curriculum built on a strong science background in mathematics, physics, and chemistry. This brings a unique set of skills in transport, reaction engineering, and thermodynamics, coupled with suitable process systems engineering and process design courses, to supply well‐trained engineers to a vast array of process manufacturing facilities. These facilities produce basic chemicals, pharmaceuticals, oil and gas, petrochemicals, food and agricultural products, minerals, and materials. While this maturity has served existing industries well, we argue that the chemical engineering field is at crossroads between managing the curriculum of undergraduate and graduate education to supply the needs of established industries while creating innovators for emerging industries. While this is a great opportunity for yet another introspection, we caution that the inadvertent cannibalization of the field must be avoided. We do argue in favour of adding a biology sequence and a computational science sequence to the core at the undergraduate level in a related perspective article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.