Abstract

Numerical simulation of CO2 addition effects to fuel and oxidizer streams on flame structure has been conducted with detailed chemistry in H2–O2 diffusion flames of a counterflow configuration. An artificial species, which displaces added CO2 in the fuel- and oxidizer-sides and has the same thermochemical, transport, and radiation properties to that of added CO2, is introduced to extract pure chemical effects in flame structure. Chemical effects due to thermal dissociation of added CO2 causes the reduction flame temperature in addition to some thermal effects. The reason why flame temperature due to chemical effects is larger in cases of CO2 addition to oxidizer stream is well explained though a defined characteristic strain rate. The produced CO is responsible for the reaction, CO2+H=CO+OH and takes its origin from chemical effects due to thermal dissociation. It is also found that the behavior of produced CO mole fraction is closely related to added CO2 mole fraction, maximum H mole fraction and its position, and maximum flame temperature and its position. Copyright © 2003 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.