Abstract

The composition of a nitride nanolayer formed on a GaAs(100) surface by the implantation of ions with an energy of E i = 2.5 keV and the chemical state of nitrogen in this layer have been studied by the method of Auger electron spectroscopy. It is established that, in addition to GaN, a GaAsN solid solution phase is formed in the ion-implanted layer. The energies of N KVV Auger electron transitions in these phases are determined as E A (GaN) = 379.8 ± 0.2 eV and E A (GaAsN) = 382.8 ± 0.2 eV (relative to the Fermi level), which allowed the distribution of nitrogen between these phases to be evaluated as [N(GaN)] = 70% and [N(GaAsN)] = 30%. It is established that an argon ion beam produces a chemical effect on the nitride layer, which is related to a cascade mixing of the material. Under the action of the argon ion bombardment, the distribution of nitrogen in the indicated phases changes to opposite. As a result a nitride nanolayer is formed in which the narrow-bandgap semiconductor (GaAsN) predominates rather than the wide-bandgap component (GaN).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call