Abstract

Biological diversity reflects an underlying molecular diversity. The molecules found in nature may be regarded as solutions to challenges that have been confronted and overcome during molecular evolution. As our understanding of these solutions deepens, the efficiency with which we can discover and/or design new treatments for human disease grows. Nature assists our drug discovery efforts in a variety of ways. Some compounds synthesized by microorganisms and plants are used directly as drugs. Human genetic variations that predispose to (or protect against) certain diseases may point to important drug targets. Organisms that manipulate molecules within us to their benefit also may help us to recognize key biochemical control points. Drug design efforts are expedited by knowledge of the biochemistry of a target. To supplement this knowledge, we screen compounds from sources selected to maximize molecular diversity. Organisms known to manipulate biochemical pathways of other organisms can be sources of particular interest. By using high throughput assays, pharmaceutical companies can rapidly scan the contents of tens of thousands of extracts of microorganisms, plants, and insects. A screen may be designed to search for compounds that affect the activity of an individual targeted human receptor, enzyme, or ion channel, or the screen might be designed to capture compounds that affect any step in a targeted metabolic or biochemical signaling pathway. While a natural product discovered by such a screen will itself only rarely become a drug (its potency, selectivity, bioavailability, and/or stability may be inadequate), it may suggest a type of structure that would interact with the target, serving as a point of departure for a medicinal chemistry effort--i.e., it may be a "lead." It is still beyond our capability to design, routinely, such lead structures, based simply upon knowledge of the structure of our target. However, if a drug discovery target contains regions of structure homologous to that in other proteins, structures known to interact with those proteins may prove useful as leads for a medicinal chemistry effort. The specificity of a lead for a target may be optimized by directing structural variation to specificity-determining sites and away from those sites required for interaction with conserved features of the targeted protein structure. Strategies that facilitate recognition and exploration of sites at which variation is most likely to generate a novel function increase the efficiency with which useful molecules can be created.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.