Abstract

The observed chemical diversity of Milky Way stars places important constraints on Galactic chemical evolution and the mixing processes that operate within the interstellar medium. Recent works have found that the chemical diversity of disk stars is low. For example, the Apache Point Observatory Galactic Evolution Experiment (APOGEE) “chemical doppelganger rate,” or the rate at which random pairs of field stars appear as chemically similar as stars born together, is high, and the chemical distributions of APOGEE stars in some Galactic populations are well-described by two-dimensional models. However, limited attention has been paid to the heavy elements (Z > 30) in this context. In this work, we probe the potential for neutron-capture elements to enhance the chemical diversity of stars by determining their effect on the chemical doppelganger rate. We measure the doppelganger rate in GALactic Archaeology with HERMES DR3, with abundances rederived using The Cannon, and find that considering the neutron-capture elements decreases the doppelganger rate from ∼2.2% to 0.4%, nearly a factor of 6, for stars with −0.1 < [Fe/H] < 0.1. While chemical similarity correlates with similarity in age and dynamics, including neutron-capture elements does not appear to select stars that are more similar in these characteristics. Our results highlight that the neutron-capture elements contain information that is distinct from that of the lighter elements and thus add at least one dimension to Milky Way abundance space. This work illustrates the importance of considering the neutron-capture elements when chemically characterizing stars and motivates ongoing work to improve their atomic data and measurements in spectroscopic surveys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.