Abstract
We analyze the spatiotemporal behavior in a lattice-gas model for the monomer-dimer reaction on surfaces. This model, which mimics catalytic CO-oxidation, includes a mobile monomer adspecies (representing CO), an immobile dissociatively adsorbed dimer species (representing O), and a finite reaction rate (for CO2 production). We characterize in detail the propagation of the chemical wave or reaction front produced when the stable reactive steady-state of the model displaces the metastable CO-poisoned state. In the regime of high CO-mobility, such propagation can be described directly within a “hydrodynamic” reaction-diffusion equation formalism. However, we show that the chemical diffusivity of CO is dependent on the O coverage, reflecting the percolative nature of CO-transport through a background of immobile O. We also emphasize that gradients in the coverage of immobile O induce a diffusive flux in the highly mobile CO. These features significantly influence wave propagation and reaction front structure. In addition, our analysis accounts for the feature that in this hydrodynamic regime, correlations persist in the distribution of adsorbed immobile O, and that these influence the reaction kinetics, the steady states, and the percolation and diffusion properties. To this end, we utilize a “hybrid” approach which incorporates a mean-field reaction-diffusion treatment of adsorbed CO, coupled with a lattice-gas treatment of adsorbed O [Tammaro et al., J. Chem. Phys. 103, 10277 (1995)].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.