Abstract

AbstractSubmicron aerosol (PM1) species measured by aerosol mass spectrometers have been widely used to validate chemical transport models; however, the uncertainties due to chemical differences between PM1 and PM2.5 are poorly constrained. Here we characterized such differences in a highly polluted environment in north China in winter. Our results showed that the changes in PM1/PM2.5 ratios as a function of relative humidity (RH) were largely different for primary and secondary species. Secondary organic and inorganic aerosol (SOA and SIA) presented clear decreases in PM1/PM2.5 ratios at RH > 60% during periods with high SIA contributions (>50%), likely driven by the changes in aerosol hygroscopicity and phase states, while the traffic and coal combustion OA had limited dependence on RH. Thermodynamic modeling showed negligible impacts of PM differences on predictions of particle acidity, yet these impacts can cause a difference in aerosol water content by up to 50–70%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.