Abstract
Social parasites are involved in a coevolutionary arms race, which drives increasing specialization resulting in a very narrow host range. The Formicoxenus ants are a small group of social parasites with a xenobiotic lifestyle. Formicoxenus quebecensis and Formicoxenus provancheri are highly specialized ants using chemical mimicry to blend into their respective Myrmica ant host colonies. However, Formicoxenus nitidulus is unique in being able to survive in over 11 different ant host species. We observed that when live or dead F. nitidulus adults are seized by their host they are immediately dropped undamaged, despite possessing a cuticular hydrocarbon profile that differs markedly from its host. Hexane extracts of the F. nitidulus cuticle made previously acceptable prey items unattractive to their Formica host, indicating a chemical deterrent effect. This is the first time that a social parasite has been shown to exploit the generalized deterrence strategy to avoid host aggression over long periods of time. This supports the idea that coevolved and generalist diseases or parasites require fundamentally different defence mechanisms. We suggest that F. nitidulus uses its cuticular chemistry, possible alkadienes, as a novel deterrent mechanism to allow it to switch hosts easily and so become a widespread and abundant social parasite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.