Abstract

IntroductionSystemic amyloidosis is a rare disease caused by the deposition of amyloid fibrils in various organs. Amyloid-targeted radiopharmaceuticals have been developed and applied to diagnose systemic amyloidosis peripherally; however, high-contrast imaging has not been achieved because of the high background signals in normal organs. To overcome this problem, we designed an amyloid-targeted radioiodinated probe 1 with a metabolizable linkage (ester bond) to release of radiolabeled metabolites (m-iodohippuric acid) in normal organs that could be rapidly excreted in the urine. MethodsCompound 1 was synthesized by conjugating 2-(4-(methylamino)phenyl)benzo[d]thiazol-6-ol, an amyloid-targeting compound, with m-iodohippuric acid. [125I]1 was synthesized via iododestannylation using a tributyltin precursor. Mouse models of amyloid A (AA) amyloidosis, a type of systemic amyloidosis, were prepared by administering amyloid-enhancing factor to mice and used for in vitro autoradiography using organ sections and in vivo evaluation. Results[125I]1 was obtained with a radiochemical yield of 59% and radiochemical purity of over 95%. An in vitro autoradiographic study demonstrated that [125I]1 specifically binds to amyloid in the splenic tissue. Upon administration to normal mice, [125I]1 was distributed to organs throughout the body, followed by the rapid excretion of radioactivity in the urine as m-[125I]iodohippuric acid. Furthermore, ex vivo autoradiography showed that [125I]1 bound to the amyloid formed around the follicles in the spleens of AA amyloidosis model mice. ConclusionThese results suggest that the interposition of a metabolizable linkage between an amyloid-targeting moiety and a radiolabeled hippuric acid would be useful in the design of radiopharmaceuticals for high-contrast imaging of systemic amyloidosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call