Abstract
To obtain a better understanding of the deactivation of SCR catalysts that may be encountered due to the presence of P-containing impurities in diesel exhausts, the effects induced by P over Cu/BEA NH3-SCR catalysts were studied as functions of the temperature of poisoning and P concentration in the feed. Cu/BEA catalysts with different Cu loadings (4 and 1.3wt% Cu) were exposed to P by controlled evaporation of H3PO4 in the presence of 8% O2 and 5% H2O at 573 and 773K. The reaction studies were performed by NH3-storage/TPD, NH3/NO oxidation and standard NH3-SCR. In addition, a combination of several characterisation techniques (ICP–AES, BET surface area, pore size distribution, H2-TPR and XPS) was applied to provide useful information regarding the mechanism of P deactivation. Pore condensation of H3PO4 in combination with pore blocking was observed. However, the measured overall deactivation was found to occur mostly by chemical deactivation reducing the number of the active Cu species and hence deteriorating the redox properties of the Cu/BEA catalysts. The process of P accumulation on the surface preferentially occurs on the “over exchanged” Cu active sites with the formation of phosphate species. This is likely the reason for the more severe deactivation of the 4% Cu/BEA compared to 1.3% Cu/BEA. Further, the higher NOx reduction performance at 773K of the P-poisoned Cu/BEA catalysts was found to originate from the lower selectivity towards NH3 oxidation, which occurs predominately on the “over-exchanged” sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.