Abstract

Research Article| May 01, 1958 CHEMICAL DATA ON DESERT VARNISH CELESTE G ENGEL; CELESTE G ENGEL DIVISION OF GEOLOGICAL SCIENCES, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIF. Search for other works by this author on: GSW Google Scholar ROBERT P SHARP ROBERT P SHARP DIVISION OF GEOLOGICAL SCIENCES, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIF. Search for other works by this author on: GSW Google Scholar GSA Bulletin (1958) 69 (5): 487–518. https://doi.org/10.1130/0016-7606(1958)69[487:CDODV]2.0.CO;2 Article history first online: 02 Mar 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation CELESTE G ENGEL, ROBERT P SHARP; CHEMICAL DATA ON DESERT VARNISH. GSA Bulletin 1958;; 69 (5): 487–518. doi: https://doi.org/10.1130/0016-7606(1958)69[487:CDODV]2.0.CO;2 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyGSA Bulletin Search Advanced Search Abstract Desert varnish forms a dark coating up to 0.10 mm thick on the exposed surfaces of many stones and outcrops in southern California deserts. Wet chemical analyses were made of varnish, the underlying weathered rind, and fresh rock for a rhyolite and two andesites. The principal elements in varnish are O, H, Si, Al, Fe, and Mn, and the last two give the deposit its distinctive physical characteristics. H2O, Fe2O3, and especially MnO show the greatest enrichment. Field observations and a number of partial analyses indicate that the best varnishes are on fine-grained rocks relatively rich in Fe and Mn.Spectrographic analyses were made of 22 varnishes, 14 rocks, 8 soils, and 5 samples of air-borne material. In the varnishes Ti, Ba, and Sr are by far the most abundant trace elements, followed by Cu, Ni, Zr, Pb, V, Co, La, Y, B, Cr, Sc, and Yb. Cd, W, Ag, Nb, Sn, Ga, Mo, Be, and Zn were recorded in some but not all varnishes. The trace-element content of all varnishes is similar, and the variations recorded are related to differences in the local geology. Most trace elements are considerably enriched in varnish—Cu and Co especially, and Ni, Pb, Ba, Cr, Yb, B, Y, Sr, and V.The chemical data suggest that (1) varnish on stones seated in soil or colluvium is derived largely from that material, (2) varnish on large bedrock exposures come from weathered parts of the rock, (3) air-borne material is probably a minor contributor.The formation of desert varnish is primarily a weathering process involving the solution, transportation, and deposition of Mn and Fe in particular and a host of trace elements. Most of these elements are derived from local sources, and the small amount of movement required can occur by transport in solution or possibly by ionic diffusion through moisture films. Dew may be as important a source of moisture as rain. Organic agents, such as bacteria, may cause deposition of varnish, but this has not yet been demonstrated. In the desert, evaporation and the catalytic action of MnO2 should be capable of performing the task.The rate of varnish formation varies widely with local conditions. Hundreds and thousands of years may be required to form a dark coating in some situations, but at one locality in the Mojave Desert a good varnish formed on the surface stones of an alluvial deposit in 25 years. Although the widespread evidence of varnish deterioration may be due to climatological change, conditions in some parts of this desert area are currently favorable to varnish formation. This content is PDF only. Please click on the PDF icon to access. First Page Preview Close Modal You do not have access to this content, please speak to your institutional administrator if you feel you should have access.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.