Abstract

Freshly isolated intact ox neurofilaments have been incubated with copper(II)-o-phenanthroline complex to induce thiol cross-linking between the two largest (apparent Mr 205 000 and 158 000) polypeptide components. Subsequent tryptic digestion shows that the thiol bonds formed between these polypeptides are distributed exclusively among 'rod-domain' fragments that remain associated with intact sedimentable filaments. These observations suggest that the polypeptide chains of the two largest neurofilament components are closely arranged within the backbone but are separate from one another in more peripheral regions. Soluble protofilaments derived from neurofilament disassembly at low ionic strength and high pH have also been cross-linked via thiol bonds in order to determine the polypeptide arrangement within these structures. All three neurofilament polypeptides cross-link more readily when in the form of protofilaments than when in the form of fully assembled filaments, and the pattern of cross-linked complexes formed is different. Analysis of one of these complexes shows that at least some of the protofilaments are composed of oligomers containing both the 72 000- and the 158 000-Mr neurofilament polypeptides arranged in close proximity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call