Abstract

AbstractVacancy‐ordered double perovskites are attracting significant attention due to their chemical diversity and interesting optoelectronic properties. With a view to understanding both the optical and magnetic properties of these compounds, two series of RuIV halides are presented; A2RuCl6 and A2RuBr6, where A is K, NH4, Rb or Cs. We show that the optical properties and spin‐orbit coupling (SOC) behavior can be tuned through changing the A cation and the halide. Within a series, the energy of the ligand‐to‐metal charge transfer increases as the unit cell expands with the larger A cation, and the band gaps are higher for the respective chlorides than for the bromides. The magnetic moments of the systems are temperature dependent due to a non‐magnetic ground state with Jeff=0 caused by SOC. Ru‐X covalency, and consequently, the delocalization of metal d‐electrons, result in systematic trends of the SOC constants due to variations in the A cation and the halide anion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call