Abstract

The two-photon absorption (TPA) process is the simplest and hence the most studied nonlinear optical phenomenon, and various aspects of this process have been explored in the past few decades, experimentally as well as theoretically. Previous investigations have shown that the two-photon (TP) activity of a molecular system can be tuned, and at present, performance-tailored TP active materials are easy to develop by monitoring factors such as length of conjugation, dimensionality of charge-transfer network, strength of donor-acceptor groups, polarity of solvents, self-aggregation, H-bonding, and micellar encapsulation to mention but a few. One of the most intriguing phenomena affecting the TP activity of a molecule is channel interference. The phrase "channel interference" implies that if the TP transition from one electronic state to another involves more than one optical pathway or channel, characterized by the corresponding transition dipole moment (TDM) vectors, the channels may interfere with each other depending upon the angles between the TDM vectors and hence can either increase (constructive interference) or decrease (destructive interference) the overall TP activity of a system to a significant extent. This phenomenon was first pointed out by Cronstrand, Luo, and Ågren [Chem. Phys. Lett. 2002, 352, 262-269] in two-dimensional systems (i.e., only involving two components of the transition moment vectors). For three-dimensional molecules, an extended version of this idea was required. In order to fill this gap, we developed a generalized model for describing and exploring channel interference, valid for systems of any dimensionality. We have in particular applied it to through-bond (TB) and through-space (TS) charge-transfer systems both in gas phase and in solvents with different polarities. In this Account, we will, in addition to briefly describing the concept of channel interference, discuss two key findings of our recent work: (1) how to control the channel interference by chemical means, and (2) the role of channel interference in the anomalous solvent dependence of certain TP chromophores. For example, we will show that simple structurally induced changes in certain dihedral angles of the well-known betaine dye (TB type) will help fine-tune the constructive channel interference and hence increase the overall TP activity of molecules with this general TP channel structure. Another intriguing result we will discuss is observed for a tweezer-trinitrofluorinone complex (TS type) where, on moving from polar to essentially nonpolar solvents, the nature of the channel interference switches from destructive to constructive, leading to a net abnormal solvent dependence of the TP activity of the system. The present Account highlights the usefulness of the channel interference effect and establishes it as a new and unique way of controlling the TP transition probability in different types of three-dimensional molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call