Abstract

Seven colonies of Lobophytum compactum Tixier-Durivault, 1956, which produce isolobophytolide as the major secondary metabolite, were selected from a fringing reef in the Pelorus Channel, Palm Island Group (18°34′S; 146°29′E), North Queensland, Australia. In September 1991, they were sectioned to afford two portions which were relocated to a grid, and a significant part of the parent colony which was left in place. The aim of the experiment was to determine the effect of relocation and contact with a toxic alga on the secondary metabolite content of a soft coral. A significant increase in the concentration of isolobophytolide was observed for all relocated colonies (n=14, p=0.001) compared to the non-relocated control colonies. This decreased after 2 mo, and was not significantly different from that of the non-relocated control colonies (n=14, p=0.881). After 1 mo, Plocamium hamatum J. Agardh plants were placed in direct contact with 50% of the relocated colonies. All soft-coral colonies in contact with the alga (n=7), showed tissue necrosis on the parts in direct contact with the alga after a further 2 wk. Tissues of the relocated control colonies (n=7), and those portions of treated colonies which were not in direct contact with the alga, were not affected. The parts of the colonies in contact with the alga showed a significant decrease in lipid content over time (n=7, p=0.001) and also a decrease in the concentration of the diterpene isolobophytolide (n=7, p=0.001). The effects of P. hamatum on the soft coral were essentially restricted to contract necrosis; chemical variations in the affected tissue were the outcomes of this necrosis. These results indicate that stress due to relocation is a more important factor in the variation of isolobophytolide levels in the soft coral L. compactum than is contact with the alga P. hamatum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.