Abstract

Human skin, in common with other organs, ages as a consequence of the passage of time, but in areas exposed to solar ultraviolet radiation, the effects of this intrinsic ageing process are exacerbated. In particular, both the severity and speed of onset of age-related changes, such as wrinkle formation and loss of elasticity, are enhanced in photoaged (also termed extrinsically aged) as compared with aged, photoprotected, skin. The anatomy of skin is characterised by two major layers: an outer, avascular, yet highly cellular and dynamic epidermis and an underlying vascularised, comparatively static and cell-poor, dermis. The structural consequences of photoageing are mainly evident in the extracellular matrix-rich but cell-poor dermis where key extracellular matrix proteins are particularly susceptible to photodamage. Most investigations to date have concentrated on the cell as both a target for and mediator of, ultraviolet radiation-induced photoageing. As the main effectors of dermal remodelling produced by cells (extracellular proteases) generally have low substrate specificity, we recently suggested that the differential susceptibility of key extracellular matrix proteins to the processes of photoageing may be due to direct, as opposed to cell-mediated, photodamage.In this review, we discuss the experimental evidence for ultraviolet radiation (and related reactive oxygen species)-mediated differential degradation of normally long lived dermal proteins including the fibrillar collagens, elastic fibre components, glycoproteins and proteoglycans. Whilst these components exhibit highly diverse primary and hence macro- and supra-molecular structures, we present evidence that amino acid composition alone may be a useful predictor of age-related protein degradation in both photoexposed and, as a consequence of differential oxidation sensitivity, photoprotected, tissues.

Highlights

  • Human skin undergoes extensive changes in appearance (e.g. wrinkle formation) and mechanical function (loss of both compliance and resilience) with age [1,2,3]

  • Human skin undergoes extensive changes in appearance and mechanical function with age [1,2,3]. Whilst these structural and functional changes eventually manifest in elderly, photoprotected skin, their age of onset is accelerated and their severity is exacerbated by exposure to environmental factors such as smoking and ultraviolet radiation (UVR) [4,5,6]

  • We recently suggested that acellular, rather than cellular (UVR mediated synthesis of extracellular matrix (ECM) proteases) mechanisms may be responsible for the selective degradation of elastic fibre associated glycoproteins in early photoageing (Figure 2)

Read more

Summary

Introduction

Human skin undergoes extensive changes in appearance (e.g. wrinkle formation) and mechanical function (loss of both compliance and resilience) with age [1,2,3]. We discuss: i) the composition of healthy skin: ii) the effects of UVR exposure on skin structure and function, iii) experimental evidence that UVR directly and differentially degrades skin biomolecules and: iv) the potential for amino acid composition alone (as opposed to higher order structures) to predict the susceptibility of key ECM proteins to direct (via UVR absorption) and indirect (via photodynamically produced reactive oxygen species [ROS]) degradation.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call