Abstract

In this study, crude extracts of Ganoderma lucidum (NGCs) were compared to the crude extracts of G. lucidum that has antler-like fruiting bodies (AGCs) for their cytotoxicity, inhibitory effects on the attachment of human immunodeficiency virus (HIV)-1 glycoprotein 120 (gp120) to cluster of differentiation 4 (CD4), identification and molecular docking simulations of chemical compounds to predict the best ligand inhibitor and the binding mechanism. Results showed that AGCs had a higher percentage of inhibition (54.3% ± 6.2%) at 150 ppm and higher cytotoxicity (half maximal cytotoxic concentration [CC50] < 300 ppm) than NGCs (CC50 < 400 ppm). Quadrupole time-of-flight (QTOF) liquid chromatography- mass spectrometry (LC-MS) results successfully identified 32 chemical compounds in AGCs and NGCs, comprising mostly ganoderic acids (62%) and their derivatives. Molecular docking simulations of ganolucidic acid A/D and ganoderic acid A/B predicted the strongest binding affinity via hydrogen bonding, suggesting the inhibition of HIV-1 gp120 attachment to CD4. The highest and lowest occupied molecular orbital (HOMO and LUMO, respectively) gap energies of ganoderic acids tended to have less negative HOMO energy and smaller HOMO-LUMO gap energy, implying increased interactions of ligands to the gp120 protein receptor. AGCs showed higher inhibition against HIV-1 gp120 than NGCs due to a higher abundance of ganoderic and ganolucidic acids, whereby both acids contributed the highest number of hydrogen bonds and polar interactions from the hydroxyl and carboxylic functional groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call