Abstract

A microprobe study has been carried out on the chemical composition of tourmaline from the Yindongzi and Tongmugou stratabound Pb-Zn ore deposits, eastern Qinling, China. Tourmaline was analysed from a variety of rock types representative of its various occurrences associated with the ore bodies. All the tourmalines studied here belong to the schorl-dravite series. Most are of hydrothermal origin with Mg > Fe and Na > Ca. Some detrital cores of tourmaline have been recognized from their geometry and chemistry, with Fe > Mg. The chemical trends from core to rim in zoned grains suggest a multi-stage model for the growth of tourmaline and genesis of the ore bodies. The first stage was represented by a more Mg-rich hydrothermal fluid in the submarine hydrothermal system, producing Mg-rich tourmalines by selective replacement of clay-rich sediments close to the sediment-water interface. The second stage was dominated by Fe-rich hydrothermal fluid and resulted in overgrowth of Fe-rich tourmaline rims. This stage also led to the nucleation and growth of new tourmaline crystals and was responsible for the formation of the main massive sulphide orebodies. Finally, a further period of hydrothermal activity or a metamorphic event led to the formation of an additional rim of Mg-rich tourmaline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call