Abstract

COVID-19 is initiated by binding the SARS-CoV-2 spike protein to angiotensin-converting enzyme 2 (ACE2) on host cells. Food factors capable of suppressing the binding between the SARS-CoV-2 spike protein and ACE2 or reducing the ACE2 availability through ACE2 inhibitions may potentially reduce the risk of SARS-CoV-2 infection and COVID-19. In this study, the chemical compositions of clove water and ethanol extracts were investigated, along with their potentials in suppressing SARS-CoV-2 spike protein-ACE2 binding, reducing ACE2 availability, and scavenging free radicals. Thirty-four compounds were tentatively identified in the clove water and ethanol extracts, with six reported in clove for the first time. Clove water and ethanol extracts dose-dependently suppressed SARS-CoV-2 spike protein binding to ACE2 and inhibited ACE2 activity. The water extract had stronger inhibitory effects than the ethanol extract on a dry weight basis. The clove water extract also had more potent free radical scavenging activities against DPPH• and ABTS•+ (536.9 and 3525.06 μmol TE/g, respectively) than the ethanol extract (58.44 and 2298.01 μmol TE/g, respectively). In contrast, the ethanol extract had greater total phenolic content (TPC) and relative HO• scavenging capacity (HOSC) values (180.03 mg GAE/g and 2181.08 μmol TE/g, respectively) than the water extract (120.12 mg GAE/g and 1483.02 μmol TE/g, respectively). The present study demonstrated the potential of clove in reducing the risk of SARS-CoV-2 infection and COVID-19 development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.