Abstract

The chemical composition, structure, and physical properties of aluminum nitride (AlN) films obtained using pulsed DC reactive magnetron sputtering in asymmetric bipolar mode have been studied. X-ray diffraction and electron diffraction confirmed the composition of c–axis textured hexagonal AlN films required for piezoelectric applications. The surface of the films obtained is quite smooth; the arithmetic average roughness does not exceed 2 nm. Transmission electron microscopy has shown the presence of a transition layer at the film–substrate interface. Transmission electron microscopy and X-ray photoelectron spectroscopy depth profile analysis have shown that the films have an oxidized surface layer which has an influence on the optical model of the films derived from ellipsometric data. However, it does not significantly influence the films’ piezoresponse. Piezoelectric force microscopy indicated a piezoelectric effect in the films that is uniform over their surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call