Abstract

ZrC films were grown on (1 0 0) Si substrates by the pulsed laser deposition (PLD) technique using a KrF excimer laser working at 40 Hz. The nominal substrate temperature during depositions was set at 300 °C and the cooling rate was 5 °C/min. X-ray diffraction investigations showed that films deposited under residual vacuum or under 2 × 10 −3 Pa of CH 4 atmosphere were crystalline, exhibiting a (2 0 0)-axis texture, while those deposited under 2 × 10 −2 Pa of CH 4 atmosphere were found to be equiaxed and with smaller grain size. The surface elemental composition of as-deposited films, analyzed by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), showed the usual high oxygen contamination of carbides. Once the topmost 2–4 nm region was removed, the oxygen concentration rapidly decreased, down to around 3–8% only in bulk. Simulations of the X-ray reflectivity (XRR) curves indicated a smooth surface morphology, with roughness values below 1 nm (rms) and films density values of around 6.30–6.45 g/cm 3, very close to the bulk density. The growth rate, estimated from thickness measurements by XRR was around 8.25 nm/min. Nanoindentation results showed for the best quality ZrC films a hardness of 27.6 GPa and a reduced modulus of 228 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.