Abstract
The Haji Abad intrusion is a well-exposed Middle Eocene I-type granodioritc pluton in the Urumieh–Dokhtar magmatic assemblage (UDMA). The major constituents of the investigated rocks are K-feldspar, quartz, plagioclase, pyroxene, and minor Fe–Ti oxide and hornblende. The plagioclase compositions fall in the labradorite, andesine, and oligoclase fields. The amphiboles range in composition from magnesio-hornblende to tremolite–hornblende of the calcic-amphibole group. Most pyroxenes principally plot in the field of diopside. The calculated average pressure of emplacement is 1.9 kbar for the granodioritic rocks, crystallizing at depths of about 6.7 km. The highest pressure estimated from clinopyroxene geobarometry (5 kbar) reflects initial pyroxene crystallization pressure, indicating initial crystallization depth (17.5 km) in the Haji Abad granodiorite. The estimated temperatures using two-feldspar thermometry give an average 724 °C. The calculated average temperature for clinopyroxene crystallization is 1090 °C. The pyroxene temperatures are higher than the estimated temperature by feldspar thermometry, indicating that the pyroxene and feldspar temperatures represent the first and late stages of magmatic crystallization of Haji Abad granodiorite, respectively. Most pyroxenes plot above the line of Fe3+ = 0, indicating they crystallized under relatively high oxygen fugacity or oxidized conditions. Furthermore, the results show that the Middle Eocene granitoids crystallized from magmas with H2O content about 3.2 wt%. The relatively high water content is consistent with the generation environment of HAG rocks in an active continental margin and has allowed the magma to reach shallower crustal levels. The MMEs with ellipsoidal and spherical shapes show igneous microgranular textures and chilled margins, probably indicating the presence of magma mixing. Besides, core to rim compositional oscillations (An and FeO) for the plagioclase crystals serve as robust evidence to support magma mixing. The studied amphiboles and pyroxenes are grouped in the subalkaline fields that are consistent with crystallization from I-type calc-alkaine magma in the subduction environment related to active continental margin. Mineral chemistry data indicate that Haji Abad granodiorites were generated in an orogenic belt related to the volcanic arc setting consistent with the subduction of Neo-Tethyan oceanic crust beneath the central Iranian microcontinent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.