Abstract

Hydrolates obtained via the hydrodistillation and steam distillation of Lavandula angustifolia Mill., Syzygium aromaticum L., Foeniculum vulgare Mill., and Laurus nobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.

Highlights

  • Essential oils (EOs) are an example of highly volatile and water-insoluble plant substances.The chemical composition of EOs is highly complex

  • The aim of this study was to broaden the current knowledge of the chemical composition and antimicrobial activity of hydrolates obtained from lavender (Lavandula angustifolia Mill.), clove (Syzygium aromaticum L.), fennel (Foeniculum vulgare Mill.), and bay leaves (Laurus nobilis L.)

  • When comparing the results with respect to the hydrolate obtained by hydrodistillation (HHD ) and steam distillation (HSD ), more compounds were detected in the extracts from steam distillation (SD) hydrolates

Read more

Summary

Introduction

Essential oils (EOs) are an example of highly volatile and water-insoluble plant substances. The chemical composition of EOs is highly complex. The main components include monoterpenes and sesquiterpenes [1,2,3], and they may contain aldehydes, alcohols, ketones, acids, esters, or phenylpropanoids [4,5,6,7,8]. EOs can be extracted from plants by several methods. One of the oldest and most used methods is distillation [2]. Aqueous solutions obtained as by-products of the distillation of EOs are known as hydrolates or hydrosols [9,10]. Hydrolates have an intense herbal aroma and consist

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call