Abstract

Chemical composition of leaves (the content of carbon, nitrogen, nonstructural carbohydrates, organic acids, mineral substances, and water) and the structure of photosynthetic apparatus (specific leaf weight, cell volume, and the number of cells per unit leaf area) were investigated for 18 species of aquatic plants featuring various degrees of contact with aqueous environment and sediment. The rooted hydrophytes with floating leaves were characterized by comparatively high content of carbon and nitrogen (437 and 37 mg/g dry wt, respectively) and by low concentration of nonstructural carbohydrates, mineral substances, and organic acids (161, 54, and 60 mg/g dry wt, respectively). Unlike rooted plants, the free-floating nonrooted hydrophytes had characteristically higher content of nonstructural polysaccharides and mineral substances (by a factor of 1.3 and 1.6, respectively), while the leaf nitrogen content was 1.4 times lower, and the proportion of soluble carbohydrates in the total content of nonstructural carbohydrates was rather low (9%). The chemical composition of leaves in submerged rooted hydrophytes was intermediate between those for rooted hydrophytes with floating leaves and for nonrooted free plants. We found reliable positive correlations between the volume of photosynthesizing cells and the leaf content of organic acids (r = 0.69), as well as between specific leaf weight, the number of photosynthesizing cells per unit leaf area, and carbon content (r = 0.67 and r = 0.62, respectively). The content of nitrogen and nonstructural carbohydrates in hydrophytes was unrelated to structural characteristics of photosynthetic apparatus and depended on the absence or presence of plant attachment to the sediment. It is concluded that the structural traits of photosynthetic apparatus and the leaf chemical composition in hydrophytes featuring different degrees of plant contact with water and sediment reflect the specificity of plant adaptation to complex conditions of their habitats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call