Abstract

CuInTe2 (CIT) is one of the typical ternary chalcogenides known for its characteristic mixed polyanionic/polycationic site defects, making it a subject of continuous interest in the field of thermoelectrics. In this work, we propose a chemical composition modulation strategy for CIT by alloying GeTe and then introducing a copper deficiency (denoted by VCu). This strategy aims to unpin its Fermi level (Fr) and shift Fr into the valence band (VB) while simultaneously enabling coupling between the optical and acoustic phonon, thereby providing an extra phonon scattering path at low frequencies. The simultaneous composition regulations not only enhance the carrier concentration (nH) to 1019-1020 cm-3 but also significantly reduce the lattice thermal conductivity (κL) to ∼0.48 W m-1 K-1, thus effectively realizing electro-acoustic coordination in the present material. As a consequence, the thermoelectric (TE) performance is remarkably improved with the highest TE figure of merit (ZT) of 1.51 at ∼838 K. This value ranks at a higher level among CIT-based materials, which showcases the great significance of chemical composition modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.