Abstract

Abstract Chemical composition was assessed in soybean silages without any additive (control), with a microbial inoculant (I), with I + molasses (I+M), and with molasses only (M). Soybean plants were harvested at the reproductive 6 (R6) stage and ensiled in 2 kg-capacity PVC laboratory silos. The SIL ALL C4 inoculant produced by Alltech Brazil was used in combination with or without 2.5% molasses added to the natural matter base. A 4 × 6 factorial arrangement (4 additives × 6 fermentation periods) in a completely randomised design with 3 replications was used. The assessed fermentation periods were 1, 3, 7, 14, 28, and 56 days. Excluding the dry matter and crude protein contents it was observed an interaction effect (P<0.05) between the additive and fermentation periods in the silages. It was observed higher average values of dry matter, equal 290.02 g kg-1, and crude protein, equal 151.28 g kg-1, to I+M and M silages, respectively. It was observed lowest values (P<0.05) to neutral detergent insoluble nitrogen (NDIN) and acid detergent insoluble nitrogen (ADIN) contents in I+M silages, equal 180.47 and 125.07 g kg-1, respectively. The addition of inoculant associated or not with molasses improved affect the chemical composition of soybean silages.

Highlights

  • From a historic perspective, leguminous plants were always rated as inadequate for ensiling because they exhibited a high buffer capacity as well as low water-soluble carbohydrates and dry matter content

  • There has been an increase in the demand for information on bulky foods of higher nutritional value able to meet the nutritional needs of animals of high genetic potential or categories of higher nutritional requirements and reduce production costs, reducing the supplementation of animals with concentrates

  • Analyzing diets for Morada Nova sheep the authors[3] observed that diets that 20% cane tip silage plus 30 and 60% soy silage supplemented with 20 and 50% of concentrate promoted higher intake of dry matter (DM) (4,2a and 4,4a) and crude protein (CP) (0,84 and 0,85) in % of live weight than diets composed with 20% of cane tip silage plus 80% concentrate

Read more

Summary

Introduction

Leguminous plants were always rated as inadequate for ensiling because they exhibited a high buffer capacity as well as low water-soluble carbohydrates and dry matter content. Besides these fermentation-restrictive characteristics inherent to leguminous plants, soybean further exhibits high ether extract content, which might inhibit bacteria in the ensiled mass; this inhibition affects fermentation, resulting in high silage pH. The feed quality has limited animal performance Due to this situation, there has been an increase in the demand for information on bulky foods of higher nutritional value able to meet the nutritional needs of animals of high genetic potential or categories of higher nutritional requirements and reduce production costs, reducing the supplementation of animals with concentrates. Analyzing diets for Morada Nova sheep the authors[3] observed that diets that 20% cane tip silage plus 30 and 60% soy silage supplemented with 20 and 50% of concentrate promoted higher intake of DM (4,2a and 4,4a) and CP (0,84 and 0,85) in % of live weight than diets composed with 20% of cane tip silage plus 80% concentrate

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call