Abstract

This experiment was conducted to determine the chemical composition, digestible energy (DE), metabolizable energy (ME) and the apparent total tract (ATTD) of nutrients in six extruded full fat soybean (EFSB) samples from different sources fed to non-gestating, gestating and lactating sows. Forty-two non-gestating sows (Landrace × Yorkshire; parity 3 to 5), 42 gestating sows (Landrace × Yorkshire; parity 3 to 5; day 90 of gestation) and 42 lactating sows (Landrace × Yorkshire; parity 3 to 5; day 6 of lactation) were assigned to seven dietary treatments including a corn-based diet and six diets containing 30.24% EFSB from different sources in a completely randomized design with six replicate sows per dietary treatment. Total fecal and urine collection method was used during non-gestation and gestation, and the index method was used during lactation (0.3% chromic oxide). Differences in the chemical composition of the six EFSB samples from different sources were mainly reflected in ether extract, ash, crude fiber, neutral detergent fiber (NDF), acid detergent fiber, total dietary fiber, insoluble dietary fiber, soluble dietary fiber, and vitamin and micro minerals content, with a coefficient of variation ≥8.37%. The potassium hydroxide solubility of the six EFSB samples varied from 66.60% to 85.55%. There were no differences in ATTD of NDF between different EFSB samples. Additionally, there were no differences in ME values and ME/DE ratios between different physiological stages, but ATTD of NDF were higher for non-gestating and gestating sows than lactating sows (P < 0.01). In conclusion, EFSB can be used as a high-quality energy ingredient with high DE and ME values when fed to sows. DE values of EFSB in non-gestating, gestating, and lactating sows were 20.50, 20.70, and 20.02 MJ/kg, respectively, while ME values of EFSB was 19.76 MJ/kg in both non-gestating and gestating sows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.