Abstract

The essential oils were obtained by hydrodistillation from aerial parts of Mentha pulegium L. (M. pulegium L.) and Artemisia herba alba (A. herba alba) Asso. and analyzed by gas chromatography–flame ionization detector chromatograpy (GC–FID) and gaz chromatography–mass spectrometry (GC–MS). The antibacterial activities of the oils were determined by the disk diffusion method and a microdilution broth assay against six bacteria stains. The combinations of these essential oils with antibiotics were evaluated against two multi-drug-resistant bacteria strains: imipenem-resistant Acinetobacter baumannii (IRAB S3310) and methicillin-resistant Staphylococcus aureus (MRSA S19). The chemical analysis of M. pulegium essential oil revealed the presence of pulegone (74.8%) and neoisomenthol (10.0%). A. herba alba essential oil was characterized by camphor (32.0%), α-thujone (13.7%), 1,8-cineole (9.8%), β-thujone (5.0%), bornéol (3.8%), camphene (3.6%), and p-cymene (2.1%). All strains tested except Pseudomonas aeruginosa were susceptible to these oils. The combinations of essential oils with antibiotics exerted synergism, antagonism, or indifferent effects. The best effect was observed with A. herba alba essential oil in association with cefoxitin (CX) against MRSA S19. However, for IRAB S3310, the strongest synergistic effect was observed with M. pulegium in association with amikacin (AK). This study demonstrated that M. pulegium and A. herba alba essential oils have antibacterial activities which could be potentiated by antibiotics especially in the case of IRAB S3310.

Highlights

  • Antibiotics are one of the most common drug groups used in human and veterinary medicine

  • This study demonstrated that M. pulegium and A. herba alba essential oils have antibacterial activities which could be potentiated by antibiotics especially in the case of Academic Editor: Luca Valgimigli

  • The massive and sometimes inappropriate use of antibiotics contributes to the emergence of multi-resistant bacteria including methicillin-resistant Staphylococcus aureus (S. aureus; MRSA) and carbapenems-resistant Acinetobacter baumannii (CRAB), which are considered to be the most multi-resistant pathogens feared in nosocomial infections [1,2]

Read more

Summary

Introduction

Antibiotics are one of the most common drug groups used in human and veterinary medicine. The massive and sometimes inappropriate use of antibiotics contributes to the emergence of multi-resistant bacteria including methicillin-resistant Staphylococcus aureus (S. aureus; MRSA) and carbapenems-resistant Acinetobacter baumannii (CRAB), which are considered to be the most multi-resistant pathogens feared in nosocomial infections [1,2]. Infections due to the antibiotics-resistant acinetobacter, including imipenem (IMP), have emerged over the years, leading up to therapeutic impasses. The growing concern about drug resistance has led researchers to focus more attention on natural products, including plants, with antimicrobial properties as a promising source of antimicrobial agents [3]. The antimicrobial properties of essential oils (EOs) from a wide variety of aromatic plants have been assessed and reviewed and confirm their use in traditional medicine as well as to extend the shelf life of foods [4,5,6,7,8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call