Abstract

AbstractA laboratory study was carried out to investigate the secondary organic aerosol (SOA) products from photooxidation of the aromatic hydrocarbon toluene. The experiments were conducted by irradiating toluene/CH3ONO/NO/air mixtures in a home‐made smog chamber. The aerosol time‐of‐flight mass spectrometer (ATOFMS) was used to measure the size and the chemical composition of individual secondary organic aerosol particles in real‐time. According to a large number of single aerosol diameters and mass spectra, we obtained the size distribution and chemical composition of SOA statistically. Expeperimental results showed that aerosol created by toluene photooxidation is predominantly in the form of fine particles, which have diameters less than 2.5 μm (i.e. PM2.5), and the predominant components of aerosol are furane, methyl glyoxylic acid, phenol, benzaldehyde, benzyl alcohol, cresol, 3‐hydroxy‐2,4‐dioxo‐pentanal, methyl nitrophenol, and 5‐hydroxy‐4,6‐dioxo‐2‐heptenal. The possible reaction mechanisms leading to these products were also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.