Abstract

Maize ( Zea mays L.) is the most important substrate for biogas production in Germany. This study was conducted to determine the influence of harvest date and hybrid maturity on the yield and quality of maize biomass for anaerobic methane production. In 2004 and 2005, maize hybrids of widely contrasting maturity were grown on a loamy sand soil (Haplic Luvisol) near Braunschweig, Germany. Whole-plant yield was determined several times after female flowering and the biomass analysed for nutrient composition. The specific methane yield (SMY) was measured using 20 l batch digesters. In both experimental years, the late energy maize prototypes had a lower concentration of fat and protein, but higher concentration of ash, detergent fibre, and lignin as compared with the climatically adapted medium-early hybrids. Despite substantially different nutrient concentration among the maize hybrids, no clear-cut association existed between chemical composition and specific methane yield. Contrary to the medium-early hybrids, the late hybrids attained both maximum specific methane yield and maximum methane hectare yields at the final harvest date. In the very long growing season of 2004, the highest individual methane yield of 9370 N m 3 ha −1 was obtained by the hybrid with the latest maturity used in the study. It appears that late energy maize, which can take full advantage of the growing season, is better suited for biogas production, provided that the whole-plant dry matter concentration is high enough to produce good quality silage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.