Abstract

<p>Atmospheric particulate matter has adverse effects on human health, and causes over 4 million deaths per year globally. New Delhi was ranked as world’s most polluted megacity with annual average PM<sub>2.5</sub> concentration of ~140 ug.m<sup>-3</sup>. Thus, real time chemical characterization of fine particulate matter and identification of its sources is important for developing cost effective mitigation policies.</p><p>Highly time resolved real-time chemical composition of PM<sub>2.5</sub> was measured using Long-Time of Flight-Aerosol Mass Spectrometer (L-ToF-AMS) at Indian Institute of Technology Delhi and Time of Flight-Aerosol Chemical Speciation Monitor (ToF-ACSM) at Indian Institute of Tropical Meteorology, Delhi, and PM<sub>1 </sub>using High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS) at Manav Rachna International University, Faridabad, Haryana located ~40 km downwind of Delhi during Jan-March, 2018. Black carbon concentration was measured using Aethalometer at all three sites. Unit mass resolution (UMR) and high resolution (HR) data analysis were performed on AMS and ACSM mass spectra to calculate organics, nitrate, sulfate and chloride concentrations. Positive Matrix Factorization (PMF) (Paatero and Tapper, 1994) of organic mass spectra was performed by applying multilinear engine (ME-2) algorithm using Sofi (Source finder) for identifying sources of OA.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.