Abstract

Identification of volatiles in beer is important for consumers acceptability. In this study, triplicates of 24 beers from three types of fermentation (top/bottom/spontaneous) were analyzed using Gas Chromatograph with Mass-Selective Detector (GC-MSD) employing solid-phase microextraction (SPME). Principal components analysis was conducted for each type of fermentation. Multiple regression analysis, and an artificial neutral network model (ANN) were developed with the peak-areas of 10 volatiles to evaluate/predict aroma, flavor and overall liking. There were no hops-derived volatiles in bottom-fermentation beers, but they were present in top and spontaneous. Top and spontaneous had more volatiles than bottom-fermentation. 4-Ethyguaiacol and trans-β-ionone were positive towards aroma, flavor and overall liking. Styrene had a negative effect on aroma, flavor and overall liking. An ANN model with high accuracy (R = 0.98) was obtained to predict aroma, flavor and overall liking. The use of SPME-GC-MSD is an effective method to detect volatiles in beers that contribute to acceptability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.