Abstract

Severe pollution caused by atmospheric particulate matter (PM) has become a global environmental issue. Samples of atmospheric PM were collected before and during the Chinese Spring Festival in Xiamen, a coastal city in Southeast China, to investigate their chemical characteristics, sources, and formation mechanisms. The results indicated that PM2.5 mass concentrations comprised 53.60% and 56.31% of total suspended particulates before and during the Spring Festival, respectively. Due to the halt of factory production and construction and the reduction of vehicle flow during the Spring Festival, the concentrations of organic carbon, elemental carbon and water soluble ions in PM2.5 decreased by 78.56%, 84.19% and 27.53%, respectively, compared with those before the Spring Festival. However, the concentrations of K+, Mg2+, Al, Sr, and Ba increased by 3121.76%, 571.67%, 183.71%, 180.15%, and 137.58%, respectively, resulting from the display of fireworks and firecrackers during the Spring Festival. Analysis of backward air mass trajectory indicated that the concentrations of PM2.5 and its components were dominated by local pollution sources before and during the Spring Festival. The relationships between meteorological conditions and pollutant concentrations showed that the secondary organic aerosol was generated from the heterogeneous reaction before the Spring Festival, and the secondary inorganic aerosol was formed by the photochemical reaction during the Spring Festival.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call