Abstract
We collected aerosol particles in Seoul using a 10 stage Micro-Orifice Uniform Deposit Impactor (MOUDI) to investigate the size distributions of aerosol mass and water-soluble inorganic ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl−, NO3−, and SO42−) for the two high-mass episodes taking place in February and April, 2009. The former was a heavy Asian dust (AD) event and the latter was a haze episode associated with stagnant condition that prevailed over the Yellow Sea region. In AD plume, the mass peak was noticeable at coarse mode between 1.0 and 1.8μm but SO42− and NH4+ were enriched in condensation mode between 0.056 and 0.1μm. There was little chance for the heavy AD plume to pick up SO2 and water vapor, which are in good accordance with its transport paths and the chemical characteristics of aerosols and gaseous species. These results imply that the heterogeneous reaction of SO2 on dust particles would not be substantial in determining sulfate concentrations for this particular type of dust plume, considering the possibility of loss of large soil particles in MOUDI. During the haze episode, both total aerosol mass and water-soluble inorganic ions showed bimodal size distributions with the droplet (0.32–0.56μm) and coarse (1.0–1.8μm) mode peaks. In this haze event, acidic gases tend to be dissolved more efficiently in larger particles, shifting the peaks of SO42− and NO3− to larger droplet particles. For NH4+, however, the mode change was not observed, which was probably due to the depleted source and high solubility of NH3. These results demonstrated that the availability of precursor gases such as SO2, NO2, and NH3, and the water-vapor contents were important factor to determine the formation of droplet-mode particles and their sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.