Abstract
Tire wear is one of the major sources of traffic-related particle emissions, however, laboratory data on the components of tire wear particles (TWPs) is scarce. In this study, ten brands of tires, including two types and four-speed grades, were chosen for wear tests using a tire simulator in a closed chamber. The chemical components of PM2.5 were characterized in detail, including inorganic elements, water-soluble ions (WSIs), organic carbon (OC), elemental carbon (EC), and polycyclic aromatic hydrocarbons (PAHs). Inorganic elements, WSIs, OC, and EC accounted for 8.7 ± 2.1%, 3.1 ± 0.7%, 44.0 ± 0.9%, and 9.6 ± 2.3% of the mass of PM2.5, respectively. The OC/EC ratio ranged from 2.8 to 7.6. The inorganic elements were dominated by Si and Zn. The primary ions were SO42− and NO3−, and TWPs were proven to be acidic by applying an ionic balance. The total PAHs content was 113 ± 45.0 μg g−1, with pyrene being dominant. In addition, the relationship between the chemical components and tire parameters was analyzed. Inorganic elements and WSIs in TWPs were more abundant in all-season tires than those in winter tires, whereas the content of PAHs was the opposite. The mass fractions of OC, Si, and Al in the TWPs all showed increasing trends with increasing tire speed grade, but the PAHs levels showed a decreasing trend. Ultimately, to provide more data for further research, a TWPs source profile was constructed considering the tire weighting factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.