Abstract

Abstract. Light-absorbing organic carbon (or brown carbon, BrC) in atmospheric particles has received much attention for its potential role in global radiative forcing. While a number of field measurement campaigns have differentiated light absorption by black carbon (BC) and BrC, the chemical characteristics of BrC are not well understood. In this study, we present co-located real-time light absorption and chemical composition measurements of atmospheric particles to explore the relationship between the chemical and optical characteristics of BrC at a suburban site downwind of Guangzhou, China, from November to December 2014. BrC and BC contributions to light absorption were estimated using measurements from a seven-wavelength aethalometer, while the chemical composition of non-refractory PM1 was measured with a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Using the absorption Ångström exponent (AAE) method, we estimated that BrC contributed 23.6 % to the total aerosol absorption at 370 nm, 18.1 % at 470 nm, 10.7 % at 520 nm, 10.7 % at 590 nm, and 10.5 % at 660 nm. Biomass burning organic aerosol (BBOA) has the highest mass absorption coefficient among sources of organic aerosols. Its contribution to total brown carbon absorption coefficient decreased but that of low-volatility oxygenated organic aerosol (LVOOA) increased with increasing wavelength, suggesting the need for wavelength-dependent light absorption analysis for BrC in association with its chemical makeup. Clear correlations of N-containing ion fragments with absorption coefficient were observed. These correlations also depended on their degrees of unsaturation/cyclization and oxygenation. While the current study relates light absorption by BrC to ion fragments, more detailed chemical characterization is warranted to constrain this relationship.

Highlights

  • Atmospheric particles participate considerably in the global climate direct effect via their light-scattering and/or light-absorbing components

  • This paper presents collocated, real-time atmospheric particle light absorption and chemical composition measurements at a suburban site in Pearl River Delta (PRD), China

  • While black carbon (BC) dominated aerosol light absorption, BrC contributed to absorption at short wavelengths

Read more

Summary

Introduction

Atmospheric particles participate considerably in the global climate direct effect via their light-scattering (e.g., sulfate) and/or light-absorbing components (e.g., black carbon, BC). BC is a major contributor to light absorption that leads to positive radiative forcing, increasing the average temperature of the atmosphere. The BrC absorption contribution to total aerosol light absorption can reach 20 %–50 % over regions dominated by seasonal biomass burning and biofuel combustion (Feng et al, 2013). The direct radiative forcing of organic aerosols at the top of the atmosphere can shift from cooling (−0.08 Wm−2) to warming (+0.025 Wm−2) when strong BrC absorption is included (Feng et al, 2013). Uncertainties in the sources, formation, chemical composition, and absorption properties of BrC hinder more accurate estimations of radiative forcing induced by atmospheric particles

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call